Isolation Screening And Identification Of Fungal

Code of Federal Regulations
Social Isolation and Loneliness in Older Adults
Isolation, Identification and Characterization of Psychrophilic Microorganisms and Screening for Their Cold-active Hydrolytic Enzymes
Taxonomic Approach to the Selective Isolation, Identification and Screening of Streptomycetes from Soils
Marine Microorganisms
Value-Addition in Food Products and Processing Through Enzyme Technology
Antibacterial Activity of Nanomaterials
Soil Microenvironment for Biomcribed and Polymer Production
Isolation screening and selection of Aspergillus niger cultures for citra lactonase production and fermentation
Isolation, Screening for Antibiotic Production and Identification of Selected Endophyte Fungi by Sequencing of 18S RNA/ITS Genes
Metagenomics: Techniques, Applications, Challenges and Opportunities
The Development of the LOUIS Test as a Rapid Cost-effective Screening Test for the Presumptive Identification of Salmonella and Shigella Directly from Enteric Isolation Media
Green Sustainable Process for Chemical and Environmental Engineering and Science
Microalgae as a sustainable source of both specialty and commodity products. It gives stimulating overviews from many different perspectives that describe how laboratory and applied research are creating advances in commercial microalgae production. It also addresses the still many open questions and challenges in this field.

This edition of the anthrax guidelines encompasses a systematic review of the extensive new scientific literature and relevant publications up to end 2007 including all the new information that emerged in the 3-4 years after the last peer-reviewed edition. Information on the disease is thoroughly covered, including its etiology and ecology, and offers guidance on the detection, diagnostic, epidemiology, disinfection and decontamination, treatment and prophylaxis procedures, as well as control and surveillance processes for anthrax in humans and animals. With two rounds of a rigorous peer-review process, it is a relevant source of information for the management of anthrax in humans and animals.

Social isolation and loneliness are serious yet underappreciated public health risks that affect a significant portion of the older adult population. Approximately one-quarter of community-dwelling Americans aged 65 and older are considered to be socially isolated, and a significant proportion of adults in the United States report feeling lonely. People who are 50 years of age or older are more likely to experience many of the risk factors that can cause or exacerbate social isolation or loneliness, such as living alone, the loss of family or friends, chronic illness, and sensory impairments. Over a life course, social isolation and loneliness may be episodic or chronic, depending upon an individual's circumstances and perceptions. A substantial body of evidence demonstrates that social isolation presents a major risk for premature mortality, comparable to other risk factors such as high blood pressure, smoking, or obesity. As older adults are particularly high-volume and high-frequency users of the health care system, there is an opportunity for health care professionals to identify, prevent, and mitigate the adverse health impacts of social isolation and loneliness in older adults. Social isolation and loneliness in Older Adults summarizes the evidence base and explores how social isolation and loneliness affect health and quality of life in adults aged 50 and older, particularly among low income, underserved, and vulnerable populations. This report makes recommendations specifically for clinical settings of health care to identify those who suffer the resultant negative health impacts of social isolation and loneliness and target interventions to improve their social conditions. Social Isolation and Loneliness in Older Adults considers clinical tools and methodologies, better education and training for the health care workforce, and dissemination and implementation that will be important for translating research into practice, especially as the evidence base for effective interventions continues to flourish.

The book consists of 21 chapters by subject matter experts and is divided into four parts: Soil Microenvironment and Biotransformation Mechanisms; Synergistic effects between substrates and Microbes; Polyhydroxyalkanoates: Resources, Demands and Sustainability; and Cellulose based biomaterials: Benefits and challenges. Included in the book are classical bioremediation approaches and advances in the use of nanoparticles for removal of radioactive waste. The book also presents a comprehensive overview of the various emerging nanomaterials industries. All chapters are supplemented with comprehensive illustrative diagrams and comparative tables.

The 14th International Nitrogen Fixation Congress was held in Beijing, China from October 27th through November 1st, 2004. This volume constitutes the proceedings of the Congress and represents a compilation of the presentations by scientists from more than 30 countries around the World who came to Beijing to discuss the progress made since the last Congress and to exchange ideas and information. This year marked the 30th anniversary of the first Congress held in
Pullman, Washington, USA, in 1974. Since then, this series of Congresses has met five times in North America (three in the United States and once each in Canada and Mexico), once in South America (Brazil), four times in Western Europe (once each in Spain, The Netherlands, Germany and France), once in Eastern Europe (Russia), and once in Australia; and now for the first time in Asia. China was a most appropriate choice because China is a big country with the largest population in the World, about 1.3 billion people, which is about 22% of the World’s population. It is traditionally an agricultural country, even though China has only 7% of the available farmland land. This situation explains why agriculture and its productivity are major issues for the Chinese people, its government and the scientists in the field.

Amylases are well known for applications ranging from starch and food processes industry to medical applications. The increased demand for these enzymes in various industries has led to an enormous interest in developing enzymes with better properties such as raw starch degrading amylases. It is suggested that banana peel and male inflorescence could employ as a promising substrate for the production of amylase by Aspergillus niger. Further, solid state fermentation is a better choice for amylase production as many extracellular protease producing fungi were found to produce amylase in yeast extract mannitol medium and the addition of glucose with maltose also found beneficial for increasing enzyme production. The present study was undertaken to isolate, identify and characterize the Aspergillus niger in the culture medium followed by amylase production and extraction. The banana parts used here as substrates are ripe fruit peel and male inflorescence from locally cultivated species Ethan (Nendran), Palayamkodan (Palayanthodan), Rassamudal (Njali Poovan) and Sundari. The result shows that amylase from sundari peel have the best activity followed by Ethan peel. Ethan flower bud shows the least activity among the eight substrates under study.

Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and Greener Society discusses many recently developed and successfully applied bio/phytoremediation technologies for pollution control and minimizes the lacunae in previous books. This book describes the scope and applications of bio/phytoremediation technologies and especially focuses on the associated eco-environmental concerns, field studies, sustainability issues, and future prospects. The book also examines the feasibility of environmentally friendly and sustainable bio/phytoremediation technologies to remediate contaminated sites, as well as future directions in the field of bioremediation for environmental sustainability. It illustrates the importance of microbes and plants in bio/phytoremediation and wastewater treatment. It includes chapters on original research outcomes pertaining to pollution, pollution abatement, and associated bioremediation technologies. Covers emerging bioremediation technologies, including electro-bioremediation, microbial fuel cell, nano-bioremediation, constructed wetlands, and more. Highlights key developments and challenges in bioremediation and phytoremediation technologies. Describes the roles of relatively new approaches in bio/phytoremediation, including molecular engineering and omics technologies, microbial enzymes, biosurfactants, plant-microbe interactions, genetically engineered organisms, and more.

Value Addition in Food Products and Processing using Enzyme Technology offers an updated review regarding the potential impact of new enzymes and enzyme technology on the food sector. The book brings together novel sources and technologies regarding the value added enzymes production and application in food preservation, food processing, food production, and food engineering and food biotechnology. It will be extremely useful for different types of readers, including food scientists, academic and food biotechnologists, but will also be ideal for students studying food-related courses. This book includes concise and up-to-date research information from multiple independent scientific papers from around the world. This is a multidisciplinary text for research and development professionals, research scientists, and academics in food, biotechnology, and agriculture industries. It addresses safety issues and includes the sources, screening, immobilization and application of food-grade enzymes in food. Presents research data from experts Includes emerging industry topics such as baby food and food safety Offers methodologies of enzymes in diagnostics for food testing and analysis Emphasizes enzyme technology through a microbial biotechnological lens Includes bakery and confectionary-ready products, meat and poultry products, vegetables, food ingredients, functional foods, flavors and food additives and seafood

The present study deals with the isolation, screening and selection of Aspergillus niger cultures for citric acid fermentation. The organism was isolated from onion and garlic peels which were collected from local market. Pour plate method using Czapak Dos Agar medium was used for isolation. The agar plates were incubated at room temperature for 7 days. Maximum sporulation were obtained and then stored in a refrigerator at 4°C for maintenance and further screening for citric acid fermentation. The cultural conditions and nutritional requirements for citric acid production by the selected culture were optimized in 250 ml Erlenmeyer flasks by submerged mould culture technique prior to scale up studies in a stirred fermenter. Two types of fermentation were succeeded they are solid and submerged state fermentation. In solid state fermentation basal medium for citric acid production were prepared in 7 conical flasks of about 100 ml each containing 15 ml of samples like date syrup and sugarcane juice were added in 2 conical flasks and 3.5 g of corn flour was also taken in separate flask containing the same amount of basal medium. These samples were then sterilized in an autoclave for 121°C for 15 lbs at 15 mins. These samples were cooled down and were inoculated with Aspergillus niger isolates which were obtained from Czapak Dos Agar medium. These flasks were incubated at room temperature for further studies incubatoparative study of citric acid production in various medium were studied at each intervals up to 14 days of incubation. Pineapple and date syrup have shown an extreme citric acid production when compared to other samples.

Special edition of the Federal Register, containing a codification of documents of general applicability and future effect with ancillaries.


There is a large market demand for new drugs. The existing chronic or common ailments without cures, development of new diseases with unknown causes, and the widespread existence of antibiotic-resistant pathogens, have driven this field of research further by looking at all potential sources of natural products. To date, microbes have made a significant contribution to the health and well-being of people globally. The discoveries of useful metabolites produced by microbes have resulted in a significant proportion of pharmaceutical products in today's market. Therefore, the investigation and identification of bioactive compound(s) producing microbes is always of great interest to researchers. Actinobacteria are one of the most important and efficient groups of natural metabolite producers. Among the numerous genera, Streptomyces have been recognized as prolific producers of useful natural compounds, as they provide more than half of the naturally-occurring antibiotics isolated to-date and continue to emerge as the primary.
source of new bioactive compounds. Certainly, these potentials have attracted ample research interest and a wide range of biological activities have been subsequently screened by researchers with the utilization of different in vitro and in vivo experimental setups. In significant number of instances, antinociceptive activity exhibited by Actinobacteria were exhibiting either strong antioxidant or neuroprotective activity. The further in depth studies have then established the modulation of apoptotic pathway was involved in those observed bioactivities. These findings indirectly prove the biopharmaceutical potential possessed by Actinobacteria and at the same time substantiate the importance of in vitro pharmacological evaluations on Actinobacteria. In fact, many novel compounds discovered from Actinobacteria with strong potential in clinical applications have been developed into new drugs by pharmaceutical companies. Together with the advancement in science and technology, it is predicted that there would be an expedition in discoveries of new bioactive compounds producing Actinobacteria from various sources, including soil and marine sources. In light of these current needs, and great interest in the scope of this research, this book seeks to contribute on the investigation of different biological active compound(s) producing actinobacteria which are exhibiting antimicrobial, antioxidant, neuroprotective, anticancer activities and similar.

The future of agriculture greatly depends on our ability to enhance productivity without sacrificing long-term product quality and environmental sustainability. The application of microorganisms, such as the diverse bacterial species of plant growth promoting rhizobacteria (PGPR), represents an ecologically and economically sustainable strategy. The use of these bioresources for the enhancement of crop productivity is gaining importance worldwide. Bacteria in Agrobiology: Crop Productivity focus on the role of beneficial bacteria in crop growth, increased nutrient uptake and mobilization, and defense against phytopathogens. Diverse group of agricultural crops and medicinal plants are described as well as PGPR-mediated bioremediation leading to food security.

This edited book discusses various processes of feedstocks bioconversion such as bioconversion of food waste, human manure, industrial waste, beverage waste, kitchen waste, organic waste, fruit and vegetable, poultry waste, solid waste, agro-industrial waste, cow dung, steroid, lignocellulosic residue, biomass, natural gas etc. Nowadays, the industrial revolution and urbanization have made human life comfortable. However, this requires excessive usage of natural resources starting from food and food products, to energy resources, materials as well as chemicals. The excess use of natural resources for human comfort is expected to high fuel prices, decline natural resources as well as cause a huge hike in the cost of raw materials. It is now the duty of researchers to grow environmentally friendly processes and techniques based on inexpensive and sustainable feedstock to accomplish such worldwide targets. Bioconversion, otherwise called biotransformation, is the change of natural materials, for example, plant or animal waste, into usable items or energy sources by microorganisms. Bioconversion is an environmentally friendly benevolent choice to supplant the over chemical methods used for the production chemicals and food products. Besides, these chemical methods have a large amount of pollutants. A variety of alternatives advancements are being considered and are directly accessible to acquire diverse valuable end-products through bioprocesses. This book discusses in detail the process and techniques of bioconversion by focusing on the organic feedstock of animal and plant origin. It brings solutions to the bioconversion of various feedstock into value-added products.

Actinobacteria are well-known producers of a vast array of secondary metabolites. Compared with actinobacteria from temperate habitats, the community structure, diversity, biological activities and mechanisms of environmental adaptation of those actinobacteria in special and extreme environments are relatively unstudied and unclear, and their functions in the ecosystem are poorly reported. Microorganisms are potential new sources of novel products and functions for exploitation in medicine, agriculture, and industry. Recent advances in cultivation, DNA sequencing technologies and -omics methods have greatly contributed to the rapid advancement of our understanding of microbial diversity, taxonomy, function and they interactions with environment. Following the success of the Research Topic “Actinobacteria in special and extreme habitats: diversity, functional roles and environmental adaptations” organized in 2015, we are happy to launch a second edition. This Research Topic second edition, comprising reviews and original articles, highlights recent discoveries on rare actinobacterial diversity, phylogenomics, biological compounds, ecological function and environmental adaptations of actinobacteria in special and extreme habitats; and broadens our knowledge of actinobacterial diversity and their ecophysiological function.

The marine environment covers 70% of the earth’s surface and accounts for 98% of the potentially habitable space. The bioactives from marine microorganisms include antibiotic compounds, polysaccharides, inhibitors, enzymes, peptides, and pigments. These are used in various fields of biology that range from nutraceuticals to cosmeceuticals. Recent scientific investigations have revealed that marine microbial compounds exhibit various beneficial biological effects, such as anti-inflammatory, anti-cancer, anti-HIV, anti-hypertensive, and anti-diabetic. Marine Microorganisms: Extraction and Analysis of Bioactive Compounds sheds light on the extraction, clean-up, and detection methods of major compounds from marine organisms. The book includes information on the different classes of marine microorganisms and the bioactives that can be extracted from bacteria, fungi and microalgae. Divided into 7 chapters, the book covers bioactive marine natural products, such as marine microbes, seaweeds, and marine sponges as potential sources of drug discovery, and focuses on analysis methods of the bioactive components from marine microorganisms. A useful reference tool for researchers and students, this book provides current knowledge about isolation and analysis methods of the bioactives and provides insight into the various bioactives of marine microbes toward nutraceutical and pharmaceutical development.

This book summarizes the various areas of research in metagenomics and their potential applications in medicine, the environment and biotechnology. The book presents the recent advances in theoretical, methodological and applied aspects of metagenomics. It highlights the current frontiers of environmental genomics, microbial biosources, drug-discovery and agriculture. In addition, the book discusses various metagenomics approaches used for understanding the microbial physiology and biochemistry. Lastly the book describes a range of bioinformatics tools and computational methods for metagenomics analysis as well as the functional diversity and dynamics of microbial communities colonizing the human skin.

A practical manual of the key characteristics of the bacteria likely to be encountered in microbiology laboratories and in medical and veterinary practice.

State-of-the-art research by leading experts ## Advanced feedstock production and processing ## Enzyme and microbial biocatalysis ## Bioprocess research and development ## Commercialization of biobased products.

Green Sustainable Process for Chemical and Environmental Engineering and Science: Biosurfactants for the Bioremediation of Polluted Environments explores the use of biosurfactants in remediation initiatives, reviewing knowledge surrounding the creation and application of biosurfactants for addressing issues related to the release of toxic substances in ecosystems. Sections cover their production, assessment and optimization for bioremediation, varied pollutant degradation applications, and a range of contaminants and ecological sites. As awareness and efforts to develop greener products and processes continues to grow, biosurfactants are garnering more attention for the potential roles they can play in reducing the use and production of more toxic products. Drawing on the knowledge of its expert team of global
The actinomycetes are a group of bacteria well known as producers of antibiotics. With the advent of molecular biology they have become important to biotechnologists in the search for new antibiotics, vitamins, enzyme inhibitors, etc. They also play an important role in the biodegradation of wastes, and their wide (natural) distribution in soil, composts, water and elsewhere in the environment makes them important to the agricultural and waste industries. This research book presents a broad view of the current interest in actinomycetes, ranging from isolation/screening of actinomycetes, discovery of new antibiotics, a substantial contribution on genetic manipulation to actinomycetes in agriculture, forestry, and the threat of actinomycetes as pollutants in the environment. The chapters, which have been written by experts, are intended to provide a balanced view of the opportunities and problems in an expanding field of interest.

The book is a multidisciplinary space and serves as a platform to share and learn about the frontier knowledge between different areas related to "Recent trends in sustainable engineering." Sustainable engineering promotes the responsible use of resources and materials involved in the different manufacturing processes or the execution stages of a service. An interdisciplinary approach is required in all aspects of engineering. In this sense, engineers, researchers, and the academic community will play a fundamental role in developing new technologies that respect the environment, still, at the same time, that considers social and economic factors.

The present book discusses the screening, isolation, identification and molecular characterization of thermophilic bacteria along with the production of important industrial enzymes. The plus point of this book is abundantly used images along with detailed protocols and compositions of all the reagents. This book will open new vistas to search for novel bacteria(s) present in soil which is still unexplored for their potential.

Natural Products Isolation: Second Edition presents a practical overview of just how natural products can be extracted, prepared, and isolated from the source material. Maintaining the main theme and philosophy of the first edition, this second edition incorporates all the new significant developments in this field of research. The chapters are divided into four distinct sections: introduction, extraction, chromatography, and special topics. This second edition provides substantial background information for natural product researchers and will prove a useful reference guide to all of the available techniques.

This book is a printed edition of the Special Issue "Antibacterial Activity of Nanomaterials" that was published in Nanomaterials.

Actinomycetes are renowned as a rich source of bioactive molecules. However, the commercially potent secondary metabolites from well-known actinomycetes are difficult to discover due to the practice of screening that is leading to rediscovery of known bioactive compounds, thereby, emphasizing the need to isolate undiscovered actinomycetes. Mangroves are highly productive ecosystem though less attention has been given into the diversity of actinomycetes present in mangrove sediment particularly in Malaysia. Therefore, the objectives of this study were to isolate, screen and identify antimicrobial producing actinomycetes from sediment samples in Tanjung Lumpur mangrove. Sediments from five different sites at Tanjung Lumpur mangrove were collected and selectively pre-treated. The pretreated sediments were diluted and plated onto eight different selective media. Pretreatment of wet heat with seawater was the most effective method for the isolation of actinomycetes as it yielded a maximum of 105 isolates and IM7 was the most suitable medium for actinomycete isolation with highest percentage of recovery (31%). A total of 172 potential actinomycetes were isolated from all the media. Antimicrobial activities of the selected isolates were checked against 8 test microorganisms using primary and secondary screening. In primary screening, of 61 isolates, 43 isolates showed antimicrobial activities against one or more test microorganisms. Isolate IIUM B21 and IIUM B31 showed inhibitory activity against all the test microorganisms. They were found to have good activity against B. subtilis, S. pyogenes, C. albicans and C. pyogenes. Forty three actinomycete isolates showing positive antimicrobial activity in the primary screening were subjected to secondary screening assay. In this test, only 12 isolates showed antimicrobial activity at least to one test microorganisms. Twelve isolates were randomly selected for identification based on partial sequences of 16S rRNA gene. Eight isolates were found belong to the genus Streptomyces, 2 isolates belong to the genus Micromonospora and 2 isolates were identified as Rhodococcus species. A phylogenetic tree was constructed. The 12 identified isolates showed different morphologies on the 8 selective media. This findings revealed the potential of mangrove sediment of Tanjung Lumpur as an important source of actinomycetes with biosynthetic capabilities which might be beneficial to pharmaceutical industries.

This book explores the recent advancements in cutting-edge techniques and applications of Biotechnology. It provides an overview of prospectives and applications while emphasizing modern and emerging aspects of Biotechnology. The chapters are dedicated to various field of Biotechnology including, genome editing, probiotics, in-silico drug designing, nanoparticles and its applications, molecular diagnostics, tissue engineering, cryopreservation, and antioxidants. It is useful for both academicians and researchers in the various disciplines of life sciences, agricultural sciences, medicine, and Biotechnology in Universities, Research Institutions, and Biotech companies. This book provides the readers with a comprehensive knowledge of topics in Genomics, Bionanotechnology, Drug Designing, Diagnostics, Therapeutics, Food and Environmental Biotechnology. The chapters have been written with special reference to the latest developments in the frontier areas of Biotechnology that impacts the Biotech industries.